rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response.

نویسنده

  • Kellie J Archer
چکیده

This paper describes an R package, rpartOrdinal, that implements alternative splitting functions for fitting a classification tree when interest lies in predicting an ordinal response. This includes the generalized Gini impurity function, which was introduced as a method for predicting an ordinal response by including costs of misclassification into the impurity function, as well as an alternative ordinal impurity function due to Piccarreta (2008) that does not require the assignment of misclassification costs. The ordered twoing splitting method, which is not defined as a decrease in node impurity, is also included in the package. Since, in the ordinal response setting, misclassifying observations to adjacent categories is a less egregious error than misclassifying observations to distant categories, this package also includes a function for estimating an ordinal measure of association, the gamma statistic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

glmpathcr: An R Package for Ordinal Response Prediction in High-dimensional Data Settings

This paper describes an R package, glmpathcr, that provides a function for fitting a penalized continuation ratio model when interest lies in predicting an ordinal response. The function, glmpath.cr uses the coordinate descent fitting algorithm as implemented in glmpath and described by (Park and Hastie 2007a). Methods for extracting all estimated coefficients, extracting non-zero coefficient e...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

glmnetcr: An R Package for Ordinal Response Prediction in High-dimensional Data Settings

This paper describes an R package, glmnetcr, that provides a function for fitting a penalized continuation ratio model when interest lies in predicting an ordinal response. The function, glmnet.cr uses the coordinate descent fitting algorithm as implemented in glmnet and described by (Friedman, Hastie, and Tibshirani 2010). Methods for extracting all estimated coefficients, extracting non-zero ...

متن کامل

Modeling Paired Ordinal Response Data

 About 25 years ago, McCullagh proposed a method for modeling univariate ordinal responses. After publishing this paper, other statisticians gradually extended his method, such that we are now able to use more complicated but efficient methods to analyze correlated multivariate ordinal data, and model the relationship between these responses and host of covariates. In this paper, we aim to...

متن کامل

Modeling Binary Time Series Using Gaussian Processes With Application to Predicting Sleep States

Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of statistical software

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2010